Recursive Aggregation of Estimators by the Mirror Descent Algorithm with Averaging
نویسندگان
چکیده
We consider a recursive algorithm to construct an aggregated estimator from a finite number of base decision rules in the classification problem. The estimator approximately minimizes a convex risk functional under the l1-constraint. It is defined by a stochastic version of the mirror descent algorithm (i.e., of the method which performs gradient descent in the dual space) with an additional averaging. The main result of the paper is an upper bound for the expected accuracy
منابع مشابه
Learning by mirror averaging
Given a collection of M different estimators or classifiers, we study the problem of model selection type aggregation, i.e., we construct a new estimator or classifier, called aggregate, which is nearly as good as the best among them with respect to a given risk criterion. We define our aggregate by a simple recursive procedure which solves an auxiliary stochastic linear programming problem rel...
متن کاملGeneralization Error Bounds for Aggregation by Mirror Descent with Averaging
We consider the problem of constructing an aggregated estimator from a finite class of base functions which approximately minimizes a convex risk functional under the l1 constraint. For this purpose, we propose a stochastic procedure, the mirror descent, which performs gradient descent in the dual space. The generated estimates are additionally averaged in a recursive fashion with specific weig...
متن کاملLearning by Mirror Averaging 2185
Given a finite collection of estimators or classifiers, we study the problem of model selection type aggregation, that is, we construct a new estimator or classifier, called aggregate, which is nearly as good as the best among them with respect to a given risk criterion. We define our aggregate by a simple recursive procedure which solves an auxiliary stochastic linear programming problem relat...
متن کاملSequential Change-Point Detection via Online Convex Optimization
Sequential change-point detection when the distribution parameters are unknown is a fundamental problem in statistics and machine learning. When the post-change parameters are unknown, we consider a set of detection procedures based on sequential likelihood ratios with non-anticipating estimators constructed using online convex optimization algorithms such as online mirror descent, which provid...
متن کاملAnalysis Techniques for Adaptive Online Learning
We present tools for the analysis of Follow-The-Regularized-Leader (FTRL), Dual Averaging, and Mirror Descent algorithms when the regularizer (equivalently, proxfunction or learning rate schedule) is chosen adaptively based on the data. Adaptivity can be used to prove regret bounds that hold on every round, and also allows for data-dependent regret bounds as in AdaGrad-style algorithms (e.g., O...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Probl. Inf. Transm.
دوره 41 شماره
صفحات -
تاریخ انتشار 2005